Contributions to Zoology, 83 (2) – 2014Lucy A. Taylor; Dennis W.H. Müller; Christoph Schwitzer; Thomas M. Kaiser; Daryl Codron; Ellen Schulz; Marcus Clauss: Tooth wear in captive rhinoceroses (Diceros, Rhinoceros, Ceratotherium: Perissodactyla) differs from that of free-ranging conspecifics

To refer to this article use this url:


Tooth wear can affect body condition, reproductive success and life expectancy. Poor dental health is frequently reported in the zoo literature, and abrasion-dominated tooth wear, which is typical for grazers, has been reported in captive browsing ruminants. The aim of this study was to test if a similar effect is evident in captive rhinoceros species. Dental casts of maxillary cheek teeth of museum specimens of captive black (Diceros bicornis; browser), greater one-horned (Rhinoceros unicornis; intermediate feeder) and white rhinoceroses (Ceratotherium simum; grazer) were analysed using the recently developed extended mesowear method for rhinoceroses. Captive D. bicornis exhibited significantly more abrasion-dominated tooth wear than their free-ranging conspecifics (p<0.001), whereas captive C. simum exhibited significantly less abrasion-dominated tooth wear, particularly in the posterior cusp of the second molar (p=0.005). In R. unicornis, fewer differences were exhibited between free-ranging and captive animals, but tooth wear was highly variable in this species. In both free-ranging and captive D. bicornis, anterior cusps were significantly more abrasion-dominated than posterior cusps (p<0.05), which indicates morphological differences between cusps that may represent functional adaptations. By contrast, tooth wear gradients between free-ranging and captive animals differed, which indicates ingesta-specific influences responsible for inter-tooth wear differences. Captive D. bicornis exhibited more homogenous tooth wear than their free-ranging conspecifics, which may be caused by an increase in the absolute dietary abrasiveness and a decrease in relative environmental abrasiveness compared to their free-ranging conspecifics. The opposite occurred in C. simum. The results of this study suggest that diets fed to captive browsers are too abrasive, which could result in the premature loss of tooth functionality, leading to reduced food acquisition and processing ability and, consequently, malnourishment.