Contributions to Zoology, 73 (3) (2004)Patsy A. McLaughlin; Rafael Lemaitre; Christopher C. Tudge: Carcinization in the Anomura – fact or fiction? II. Evidence from larval, megalopal and early juvenile morphology

To refer to this article use this url:


In this second of a two-part series, carcinization in the Anomura has been reviewed from early juvenile, megalopal, and larval perspectives. Data from megalopal and early juvenile development in ten genera of the Lithodidae have provided unequivocal evidence that earlier hypotheses regarding evolution of the king crab pleon were erroneous. A pattern of sundering, and decalcification has been traced from the megalopal stage through several early crabs stages in species of Lithodes and Paralomis, with supplemental evidence from species in eight other genera. Of major significance has been the attention directed to the marginal plates of the second pleomere, which when separated in lithodids are not homologous with the adult so-called “marginal plates” of the following three tergites. Auxiliary megalopal and early juvenile lithodid data, as well as equivalent data from other paguroids, support the evolutionary direction indicated by lithodid pleonal plate development. Therefore, while carcinization, or development of a crab-like body form, has occurred in the Lithodidae, it has not proceeded from a hermit crab ancestor. Rather the data suggest the reverse, thus effectively refuting the “hermit to king” myth. Brief reviews of data available from the Lomisidae and Porcellanidae support the proposition of independent anomuran carcinization events in these taxa as well. Results of cladistic analysis of megalopal and juvenile data, although somewhat unconventional, do not support the claim of a sister-group relation of the lithodid genera Lithodes and Paralithodes with the pagurid genus Pagurus. Attempts to subject larval phase data to similar analysis were thwarted by the tendency in paguroids, including lithodids, for lecithotrophic development. Additionally, presumed initial and terminal stage deletions disallow the ontogenetic stage homologies required for meaningful phylogenetic results.