Contributions to Zoology, 70 (3) (2001)Emilia Rota; Patrick Martin; Christer Erséus: Soil-dwelling polychaetes: enigmatic as ever? Some hints on their phylogenetic relationships as suggested by a maximum parsimony analysis of 18S rRNA gene sequences

To refer to this article use this url:


The lack of resolution is the most distinctive feature of the polychaete relationships suggested by the present study. This may be due to conflicting phylogenetic signals contained in the 18S rRNA gene, as asserted by Abouheif et al. (1998), which makes the molecule unsuitable for reconstructing the evolutionary history of metazoa phyla. Alternatively, as polychaetes certainly were present by the Middle-Cambrian (Fauchald & Rouse, 1997), the impossibility of resolving the branching order in this group, as well as other major types of metazoans having radiated during this period, can be interpreted as the result of an explosive radiation (Philippe et al., 1994; Balavoine & Adoutte, 1998; Adoutte et al., 2000). While the gene is supposedly suited to solve relationships at this level, clades may have emerged too fast and too near in time to enable the accumulation of mutations on short branches corresponding to this event (Philippe et al., 1994).

Considering that only 20 polychaete families of a total of about 80 (Fauchald & Rouse, 1997) are studied at present, the poor resolution may also be due to insufficient taxonomic sampling. It is well-known that with small numbers of taxa, the choice of species can profoundly affect the phylogenetic reconstruction (Lecointre et al., 1993). A careful study of Brown et al. (1999), based on three different genes, did not significantly improve the resolution, despite a broad sampling of polychaete diversity. In addition, no less than five genes have been studied so far to elucidate polychaete relationships but none of them has convincingly recovered groupings (McHugh, 1997; Giribet & Ribera, 1998; Kojima, 1998; Siddall et al., 1998; Brown et al., 1999; Erséus et al., 2000). The biological reality of these polytomies hence appears corroborated by independent evidence, which supports the hypothesis of an ancient emergence and explosive radiation of polychaetes.

The performance of maximum parsimony is usually improved by weighting substitution types but the choice of a weighting scheme is not a trivial task and involves important assumptions that are difficult to prove (Milinkovitch et al., 1996). Given the ‘explosive radiation’ hypothesis, such a procedure will supposedly not improve the resolution of polychaete relationships and is probably not justified.

The idea that the differentiation of the polychaete families has followed a pattern of rapid radiation is not new. Fauchald (1974) considered this hypothesis to explain “the confusion in structure and numbers of anterior appendages in the different families, the odd distribution of nephridial structures and the varied development of the nervous system”. Fauchald’s phylogeny implied parallel evolution of these and other organ systems in the class and, indeed, multiple and parallel evolutionary modifications are observed in a number of other polychaete attributes (e.g. chaetae, foregut, male gametes, larval type), which further complicates attempts at reconstructing phylogeny at supra-familial level. Some questions about the homology of these features, formerly considered to involve many different families, are gradually being solved by studying their differentiation and fine details at the ultrastructural level. Thus, for instance, polychaete introsperm seem to have evolved independently many times (Jamieson & Rouse, 1989), specialized chaetae such as hooded hooks have separately evolved in Eunicida and in capitellids and spionids (Bartolomaeus, 1998), and ventral pharyngeal organs were invented by polychaetes at least four different times (Purschke, 1988b).

Despite the lack of resolution, our trees give evidence for confirming or ruling out some hypotheses about soil-dwelling polychaetes relationships. The validity of grouping P. heideri and S. subterranea into the family Parergodrilidae is here confirmed. In contrast, H. periglandulata never clustered with them and its position relative to this and other polychaete families still remains obscure. It is also strongly suggested that all of these polychaetes are far from clitellates, which means, for instance, that the hypothetical relationship between P. heideri and the oligochaete family Enchytraeidae, once suggested by Meyer (1927), is dismissed. Similarly, a possible close affinity between Parergodrilidae and Aphanoneura noted by Bunke (1967), the reality of which was not excluded by Purschke (1987), receives no confirmation from molecular data. The hypothesis of Parergodrilidae being close to Ctenodrilidae is neither supported nor refuted by our study. Interestingly, under both alignments used in this study, the most parsimonious hypotheses place H. periglandulata close to Aphanoneura. The support for such a phylogenetic position, however, is still too weak.

Other relationships are worthy of note, while not directly related to soil-dwelling polychaetes. As already noticed by Erséus et al. (2000), a close relationship between Questidae and Orbiniidae is here confirmed, in accordance with morphological data (Rouse & Fauchald, 1997), rendering irrelevant conjectures about the oligochaetoid nature of some of their morphological and development features (Giere & Riser, 1981). Further, our study does not contradict the monophyletic nature of a clade constituted by Frenulata and Vestimentifera pogonophorans suggested by Winnepenninckx et al. (1995, 1998) (many authorities now treat pogonophorans as Siboglinidae, a polychaete family; McHugh, 2000). The Aphanoneura are not closer to the Clitellata than any other annelid grouping. Conflicting evidence generated by earlier molecular studies (Moon et al., 1996; Winnepenninckx et al., 1998) probably resulted from too small a taxon sampling.

The fact that some closely related polychaetes do not cluster together in our trees is all the more puzzling, since they belong to either the same genus (the two Neanthes species) or the same superfamily (the scale worms A. aculeata and H. impar; Aphroditacea; Fauchald, 1977). Clearly, re-sequencing the 18S gene of these taxa is imperative in future studies to establish whether these anomalies result from biases (bad sequence, wrong identification, contamination) or have true biological meaning. In the latter case, this would be a further warning that the absence of suggestions of relationships between, for instance, Hrabeiella and Parergodrilidae, or between Aphanoneura and Clitellata, is at the most indicative and that sequencing of other conservative genes is badly needed.

The phylogenetic position of Myzostomida has been much debated over the years, although most often considered to be close to, or even within, the annelids (see Eeckhaut et al., 2000, for a review). On the basis of analyses of two nuclear genes (small subunit ribosomal RNA and elongation factor-1a), however, Eeckhaut et al. (2000) concluded that myzostomids are not annelids, but more likely a group close to flatworms. In our study of the 18S rRNA gene, Myzostoma sp. clusters among the polychaetes in all of the most parsimonious trees (Figs. 1, 2), but there is no bootstrap support for this position. Moreover, as no flatworm taxa were included in our analysis, the results of Eeckhaut et al. (2000) are here neither supported nor contradicted.

Lastly, as a point of relevance for clitellate relationships, the odd location of Branchiobdellida close to two polychaetes was recently shown to result from a spurious attraction (Martin, 2001), so that the monophyly of Clitellata cannot be questioned so far.


Abouheif E, Zardoya R, Meyer A. 1998. Limitations of metazoan 18S rRNA sequence data: Implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J. Mol. Evol. 47: 394-405.

Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R. 2000. The new animal phylogeny: Reliability and implications. Proc. Natl. Acad. Sci. U.S.A. 97: 4453-4456.

Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489-493.

Avel M. 1959. Classe des Annélides Oligochètes (Oligochaeta Huxley, 1875). In: Grassé PP, ed. Traité de Zoologie, t. V, fasc. I. Paris: Masson, 224-470.

Balavoine G, Adoutte A. 1998. One or three Cambrian radiations? Science 280: 397-398.

Barnes RD, Harrison FW. 1992. Introduction. In: Harrison FW, Gardiner SL, eds. Microscopic anatomy of invertebrates, vol. 7, Annelida. New York: Wiley-Liss, 1-9.

Bartolomaeus T. 1998. Chaetogenesis in polychaetous Annelida - Significance for annelid systematics and the position of the Pogonophora. Zoology 100: 348-364.

Beauchamps P de. 1959. Archiannélides (Archiannelida Hatschek, 1893). In: Grassé PP, ed. Traité de Zoologie, t. V, fasc. I. Paris: Masson, 197-223.

Beklemischev VN. 1958. Die Grundlagen der vergleichenden Anatomie der Wirbellosen, Bd. 1 [German translation], Berlin: Deutscher Verlag Wissenschaften, 1- 441.

Brinkhurst RO. 1971. Phylogeny and classification. Part 1. In: Brinkhurst RO, Jamieson BGM, Aquatic Oligochaeta of the world. Edinburgh: Oliver & Boyd, 165-177.

Brown S, Rouse G, Hutchings P, Colgan D. 1999. Assessing the usefulness of histone H3, U2 snRNA and 28S rDNA in analyses of polychaete relationships. Aust. J. Zool. 47: 499-516.

Bunke D. 1967. Zur Morphologie und Systematik der Aeolosomatidae Beddard 1895 und Potamodrilidae nov. fam. (Oligochaeta). Zool. Jb. Syst. 94: 187-368.

Bunke D. 1985. Ultrastructure of the spermatozoon and spermiogenesis in the interstitial annelid Potamodrilus fluviatilis. J. Morphol. 185: 203-216.

Bunke D. 1986. Ultrastructural investigations of the spermatozoon and its genesis in Aeolosoma litorale with considerations on the phylogenetic implications for the Aeolosomatidae (Annelida). J. Ultrastr. mol. Str. Res. 95: 113-130.

Cernosvitov L. 1937. System der Enchytraeiden. Bull. Assoc. Russe Rech. sci. Prague 5: 263-295.

Dales RP. 1962. The polychaete stomodaeum and the interrelationships of the families of Polychaeta. Proc. Zool. Soc. London 139: 389-428.

Dales RP. 1963. Annelids. London: Hutchinson University Library, 1-200.

De Rijk P. 1995. Optimisation of a database for ribosomal RNA structure and application in structural and evolutionary research. PhD thesis, University of Antwerp, Belgium.

De Rijk P, De Wachter R. 1993. DCSE, an interactive tool for sequence alignment and secondary structure research. Comput. Appl. Biosci. 9: 735-740.

Du Bois-Reymond Marcus E. 1948. Further archiannelids from Brazil. Com. Zool. Mus. Hist. Nat. Montevideo 2(48): 1-27.

Eeckhaut I, McHugh D, Mardulyn P, Tiedemann R, Monteyne D, Jangoux M, Milinkovitch MC. 2000. Myzostomida: a link between trochozoans and flatworms? Proc. R. Soc. Lond. B 267: 1383-1392.

Eriksson T. 1998. AutoDecay ver. 4.0. (program distributed by the authors). Department of Botany, Stockholm University, Stockholm, Sweden.

Erséus C, Prestegaard T, Källersjö M. 2000. Phylogenetic analysis of Tubificidae (Annelida, Clitellata) based on 18S rDNA sequences. Mol. Phyl. Evol. 15: 381-389.

Fauchald K. 1974. Polychaete phylogeny: a problem in protostome evolution. Syst. Zool. 23: 493-506.

Fauchald K. 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Nat. Hist. Mus. Los Angel. Cty Sci. Serv. 28: 1-188.

Fauchald K, Rouse GW. 1997. Polychaete systematics: past and present. Zool. Scr. 26: 71-138.

George JD, Hartmann-Schröder G. 1985. Polychaetes: British Amphinomida, Spintherida and Eunicida. Keys and notes for the identification of the species. Synopses of the British Fauna, 32, London: Brill and Backhuys, 1-221.

Giere O, Riser NW. 1981. Questidae – Polychaetes with oligochaetoid morphology and development. Zool. Scr. 10: 95-103.

Giribet G, Ribera C. 1998. The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny. Mol. Phyl. Evol. 9: 481-488.

Graefe U. 1977. Adenodrilus Graefe (in press) and Parergodrilus Reisinger two aberrant Annelida in forest soils. Publ. Centro piren. Biol. exp. 9: 25.

Heider K. 1922. Über Archianneliden. Sitzungsb. Kgl. preuss. Akad. Wiss., phys.-math. Kl., Berlin 6: 39-44.

Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA. 1996. Nucleic acids IV: sequencing and cloning. In: Hillis DM, Moritz C, Mable BK, eds. Molecular systematics. Sunderland, USA: Sinauer Associates, 321-381.

Jamieson BGM, Rouse GW. 1989. The spermatozoa of the Polychaeta (Annelida): an ultrastructural review. Biol. Rev. Cambridge 64: 93-157.

Karling TG. 1958. Zur Kenntnis von Stygocapitella subterranea Knöllner und Parergodrilus heideri Reisinger (Annelida). Ark. Zool. (s. 2) 11: 307-342.

Knöllner F. 1934. Die Tiere des Küstengrundwassers bei Schilksee (Kieler Bucht). 5. Stygocapitella subterranea nov. gen. nov. spec. Schr. naturw. Ver. Schleswig-Holstein 20: 468-472.

Kojima S. 1998. Paraphyletic status of Polychaeta suggested by phylogenetic analysis based on the amino acid sequences of elongation factor-1a. Mol. Phyl. Evol. 9: 255-261.

Lecointre G, Philippe H, Lê HLV, Le Guyader H. 1993. Species sampling has a major impact on phylogenetic inference. Mol. Phyl. Evol. 2: 205-224.

Martin P. 2001. On the origin of Hirudinea and the demise of the Oligochaeta. Proc. R. Soc. Lond. B, 268: 1089-1098.

Martin P, Kaygorodova I, Sherbakov DY, Verheyen E. 2000. Rapidly evolving lineages impede the resolution of phylogenetic relationships among Clitellata (Annelida). Mol. Phyl. Evol. 15: 355-368.

McHugh D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. Natl. Acad. Sci. USA 94: 8006-8009.

McHugh D. 2000. Molecular phylogeny of the annelids. Can. J. Zool. 78: 1873-1884.

Meyer A. 1927. Ist Parergodrilus heideri (Reisinger) ein Archiannelide? Zool. Anz. 72: 19-35.

Michaelsen W. 1928. Oligochaeta. In: Kükenthal W, Krumbach T, eds. Handbuch der Zoologie, 2. Berlin & Leipzig, 1-118.

Milinkovitch MC, LeDuc RG, Adachi J, Farnir F, Georges M, Hasegawa M. 1996. Effects of character weighting and species sampling on phylogeny reconstruction: a case study based on DNA sequence data in Cetaceans. Genetics 144: 1817-1833.

Minelli A. 1993. Biological systematics: The state of the art. London: Chapman & Hall, 1-387.

Moon SY, Kim CB, Gelder SR, Kim W. 1996. Phylogenetic positions of the aberrant branchiobdellidans and aphanoneurans within the Annelida as derived from 18S ribosomal RNA gene sequences. Hydrobiologia 324: 229-236.

Nordheim H von. 1989. Vergleichende Ultrastrukturuntersuchungen der Eu- und Paraspermien von 13 Protodrilus-Arten (Polychaeta, Annelida) und ihre taxonomische und phylogenetische Bedeutung. Helgol. Meeresunt. 43: 113-156.

Pettibone MH. 1982. Annelida. In: Parker SP, ed. Synopsis and classification of the living organisms, 2. New York: McGraw-Hill, 1-43.

Philippe H, Chenuil A, Adoutte A. 1994. Can the Cambrian explosion be inferred through molecular phylogeny ? Development 1994 Suppl.: 15-25.

Pizl V, Chalupský J. 1984. Hrabeiella periglandulata gen. et sp. n. (Annelida) - a curious worm from Czechoslovakia. Vest. Cs. Spolec. Zool. 48: 291-295.

Purschke G. 1987. Anatomy and ultrastructure of ventral pharyngeal organs and their phylogenetic importance in Polychaeta (Annelida). III. The pharynx of the Parergodrilidae. Zool. Jb., Abt. Anat. Ontog. Tiere 115: 331-362.

Purschke G. 1988a. Anatomy and ultrastructure of ventral pharyngeal organs and their phylogenetic importance in Polychaeta (Annelida). V. The pharynges of the Ctenodrilidae and Orbiniidae. Zoomorphology 108: 119-135.

Purschke G. 1988b. Pharynx. In: Westheide W, Hermans CO, eds. The ultrastructure of Polychaeta. Microfauna marina 4: 177-197.

Purschke G. 1999. Terrestrial polychaetes – models for the evolution of the Clitellata (Annelida)? Hydrobiologia 406: 87-99.

Reisinger E. 1925. Ein landbewohnender Archiannelide (Zugleich ein Beitrag zur Systematik der Archianneliden). Z. Morphol. Ökol. Tiere 3: 197-254.

Reisinger E. 1929. Die systematische Stellung von Parergodrilus heideri Reisinger. Zool. Anz. 80: 12-20.

Reisinger E. 1960. Die Lösung des Parergodrilus-Problems. Z. Morphol. Ökol. Tiere 48: 517-544.

Riser NW. 1980. The aberrant polychaet Stygocapitella from some American beaches. Wasmann J. Biol. 38: 10-17.

Rota E. 1998. Morphology and adaptations of Parergodrilus Reisinger and Hrabeiella Pizl & Chalupský, two enigmatic soil-dwelling annelids. Ital. J. Zool. 65: 75-84.

Rota E, Lupetti P. 1996. An ultrastructural investigation of Hrabeiella Pizl & Chalupský, 1984 (Annelida). I. Chaetae and body wall organization. Hydrobiologia 334: 229-239.

Rota E, Lupetti P. 1997. An ultrastructural investigation of Hrabeiella Pizl & Chalupský, 1984 (Annelida). II. The spermatozoon. Tissue & Cell 29: 603-609.

Rouse GW, Fauchald K. 1995. The articulation of annelids. Zool. Scr. 24: 269-301.

Rouse GW, Fauchald K. 1997. Cladistics and polychaetes. Zool. Scr. 26: 139-204.

Siddall ME, Fitzhugh K, Coates KA. 1998. Problems determining the phylogenetic position of Echiurans and Pogonophorans with limited data. Cladistics 14: 401-410.

Singer-Sam J, Tanguay RC, Riggs AD. 1989. Use of Chelex to improve the PCR signal from a small number of cells. Amplifications 3: 11.

Stephenson J. 1930. The Oligochaeta. Oxford: Clarendon Press, 1-978.

Swofford DL. 1998. PAUP*. Phylogenetic Analysis UsingParsimony (*and other Methods).Version 4. Sunderland, USA: Sinauer Associates.

Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.

Timm T. 1981. On the origin and evolution of aquatic Oligochaeta. Eesti NSV Tead. Akad. Toimet. Biol. 30: 174-181.

Van de Peer Y, Chapelle S, De Wachter R. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 24: 3381-3391.

Wägele JW, Stanjek G. 1995. Arthropod phylogeny inferred from partial 12S rRNA revisited: monophyly of the Tracheata depends on sequence alignment. J. Zool. Syst. Evol. Research 33: 75-80.

Westheide W, McHugh D, Purschke G, Rouse GW. 1999. Systematization of the Annelida: different approaches. Hydrobiologia 402: 291-307.

Wilfert M. 1973. Ein Beitrag zur Morphologie, Biologie und systematischen Stellung des Polychaeten Ctenodrilus serratus. Helg. wiss. Meeresunters. 25: 332-346.

Winnepenninckx B, Backeljau T. 1996. 18S rRNA alignments derived from different secondary structure models can produce alternative phylogenies. J. Zool. Syst. Evol. Res. 34: 135-143.

Winnepenninckx B, Backeljau T, De Wachter R. 1994. Small ribosomal subunit RNA and the phylogeny of Mollusca. The Nautilus, Suppl. 2: 98-110.

Winnepenninckx B, Backeljau T, De Wachter R. 1995. Phylogeny of protostome worms derived from 18S rRNA sequences. Mol. Biol. Evol. 12: 641-649.

Winnepenninckx BMH, Van de Peer Y, Backeljau T. 1998. Metazoan relationships on the basis of 18S rRNA sequences: a few years later. Amer. Zool. 38: 888-906.

This paper is dedicated to the memeory of Professor Tor Gustav karling, 1909-98